

CLASS XII SAMPLE PAPER MATHS

TANGENTS AND NORMAL

1. Find the equation of the tangent and the normal to the curve $y = x^4-6x^3+13x^2-10x+5$ at the point (1,3)

- 2. Find the equation of the tangent and the normal to the curve $y = x^2+4x+1$ when x=3.
- 3. Show that the equation of the tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at (x_1, y_1) is $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$.
- 4. Find the equation of the tangent to the curve $y=\sqrt{5x-3}-2$ which is parallel to the lines 4x-2y+3=0.
- 5. Find the equation of the normals to the curve $3x^2-y^2=8$, parallel to the line x+3y=4.

6. Prove that the curve $\left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n = 2$ touches the straight line $\frac{x}{a} + \frac{y}{b} = 2$ at the point (a,b) ,whatever be the value n.

7. Find the coordinates of the points at which the tangent to the curve $3b^2y=x^3-3ax^2is$ parallel to the x-axis.

8. Prove that all points of the curve $y^2 = 4a\left[x + asin\frac{x}{a}\right]$ at which the tangent is parallel to the axis of x, lie on a parabola.

9. Tangent are drawn from the origin to the curve y=sinx. Prove that their points of contact lie on the curve $x^2y^2 = (x^2-y^2)$.

10. Determine the points on the curve $2y = (3-x^2)$ at which the tangent is parallel to the line x+y=0.

11. Find the points on the curve $4x^2+9y^2=1$, where the tangents are perpendiculars to the line 2y+x=0.

12. Find the coordinates of the points on the curve $y=x^2+3x+4$, the tangents at which pass through the origin.

⁻⁻⁻⁻⁻

<u>CBSE Sample Papers</u> | <u>CBSE Guess Papers</u> | <u>CBSE Practice Papers</u> | <u>Important Questions</u> | <u>CBSE PSA</u> | <u>CBSE OTBA</u> | <u>Proficiency</u> <u>Test</u> | <u>10 Years Question Bank</u> | <u>CBSE Guide</u> | <u>CBSE Syllabus</u> | <u>Indian Tutors</u> | <u>Teacher' Jobs</u> <u>CBSE eBooks</u> | <u>Schools</u> | <u>Alumni</u> | <u>CBSE</u> <u>Results</u> | <u>CBSE Datesheet</u> | <u>CBSE News</u>

13. If the straight line $x\cos\alpha + y\sin\alpha = p$ touches the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, prove that $p^2 = a^2\cos^2\alpha + B^2\sin^2\alpha$.

14. If the straight line $x\cos\alpha + y\sin\alpha = p$ touches the curve $x^m y^n = a^{m+n}$; prove that : $p^{m+n}m^m n^n = (m+n)^{m+n}\cos^m\alpha \sin^n\alpha$

15. Find the equation of the normal to the curve $y=2\sin^2 3x$ at $x=\frac{\pi}{c}$.

16. Find the equations of the tangent and the normal to the curve y(x-2)(x-3)-x+7=0 at the points where it cuts the x-axis.

17. Show that $\frac{x}{a} + \frac{y}{b} = 1$ touches the curve $y = be^{-x/a}$ at the point where the curve crosses the axis of y.

18. Find the equations of the tangent and the normal at the point 't' on the curve $x=asin^{3}t$, $y=bcos^{3}t$.

<u>By:-Prateek Gupta</u> Mob No. 9716183835
