CLASS XII SAMPLE PAPER MATHS

TANGENTS AND NORMAL

1. Find the equation of the tangent and the normal to the curve $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at the point $(1,3)$
2. Find the equation of the tangent and the normal to the curve $y=x^{2}+4 x+1$ when $x=3$.
3. Show that the equation of the tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at $\left(x_{1}, y_{1}\right)$ is $\frac{x x_{1}}{a^{2}}+\frac{\mathrm{yy}_{1}}{b^{2}}=1$.
4. Find the equation of the tangent to the curye $y=\sqrt{5 x-3}-2$ which is parallel to the lines $4 x-2 y+3=0$.
5. Find the equation of the normals to the curve $3 x^{2}-y^{2}=8$, parallel to the line $x+3 y=4$.
6. Prove that the curve $\left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{n}=2$ touches the straight line $\frac{x}{a}+\frac{y}{b}=2$ at the point (a, b) ,whatever be the value n.
7. Find the coordinates of the points at which the tangent to the curve $3 b^{2} y=x^{3}-3 a x^{2}$ is parallel to the x -axis.
8. Prove that all points of the curve $y^{2}=4 \mathrm{a}\left[x+a \sin \frac{x}{a}\right]$ at which the tangent is parallel to the axis of x, lie on a parabola.
9. Tangent are drawn from the origin to the curve $y=\sin x$. Prove that their points of contact lie on the curve $x^{2} y^{2}=\left(x^{2}-y^{2}\right)$.
10. Determine the points on the curve $2 y=\left(3-x^{2}\right)$ at which the tangent is parallel to the line $x+y=0$.
11. Find the points on the curve $4 x^{2}+9 y^{2}=1$, where the tangents are perpendiculars to the line $2 \mathrm{y}+\mathrm{x}=0$.
12. Find the coordinates of the points on the curve $y=x^{2}+3 x+4$, the tangents at which pass through the origin.

Close	

13. If the straight line $x \cos \alpha+y \sin \alpha=p$ touches the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, prove that $\mathrm{p}^{2}=\mathrm{a}^{2} \cos ^{2} \alpha+\mathrm{B}^{2} \sin ^{2} \alpha$.
14. If the straight line $x \cos \alpha+y \sin \alpha=p$ touches the curve $x^{m} y^{n}=a^{m+n}$;
prove that: $\quad p^{m+n} m^{m} n^{n}=(m+n)^{m+n} \cos ^{m} \alpha \sin ^{n} \alpha$
15. Find the equation of the normal to the curve $y=2 \sin ^{2} 3 x$ at $x=\frac{\pi}{6}$.
16. Find the equations of the tangent and the normal to the curve $y(x-2)(x-3)-x+7=0$ at the points where it cuts the x-axis.
17. Show that $\frac{x}{a}+\frac{y}{b}=1$ touches the curve $y=b e^{-x / a}$ at the point where the curve crosses the axis of y.
18. Find the equations of the tangent and the normal at the point ' t ' on the curve $x=\operatorname{asin}^{3} t$, $\mathrm{y}=\mathrm{b} \cos ^{3} \mathrm{t}$.

By:-Prateek Gupta Mob No. 9716183835

